首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   752篇
  免费   136篇
  国内免费   183篇
化学   896篇
晶体学   24篇
力学   9篇
综合类   2篇
数学   6篇
物理学   134篇
  2023年   25篇
  2022年   46篇
  2021年   79篇
  2020年   68篇
  2019年   80篇
  2018年   52篇
  2017年   43篇
  2016年   56篇
  2015年   63篇
  2014年   61篇
  2013年   82篇
  2012年   57篇
  2011年   72篇
  2010年   53篇
  2009年   49篇
  2008年   38篇
  2007年   37篇
  2006年   32篇
  2005年   20篇
  2004年   16篇
  2003年   15篇
  2002年   6篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有1071条查询结果,搜索用时 93 毫秒
81.
Anatase TiO2 nanosheets (TiO2 NS) with dominant (001) facets and TiO2 nanoparticles (TiO2 NP) with dominant (101) facets are fabricated by hydrothermal hydrolysis of Ti(OC4H9)4 in the presence and absence of hydrogen fluoride (HF), respectively. Adsorption of N719 onto the as‐prepared samples from ethanol solutions is investigated and discussed. The adsorption kinetic data are modeled using the pseudo‐first‐order, pseudo‐second‐order, and intraparticle diffusion kinetics equations, and indicate that the pseudo‐second‐order kinetic equation and intraparticle diffusion model can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of N719 on the as‐prepared samples are analyzed by Langmuir and Freundlich models; this suggests that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of N719 on TiO2 NS at various temperatures, determined using the Langmuir equation, are 65.2 (30 °C), 68.2 (40 °C), and 76.6 (50 °C) mg g−1, which are smaller than those on TiO2 NP, 92.4 (30 °C), 100.0 (40 °C), and 108.2 (50 °C) mg g−1, respectively. The larger adsorption capacities of N719 for TiO2 NP versus NS are attributed to its higher specific surface areas. However, the specific adsorption capacities (qmax/SBET) at various temperatures are 1.5 (30 °C), 1.6 (40 °C), and 1.7 (50 °C) mg m−2 for TiO2 NS, which are otherwise higher than those for NP, 0.9 (30 °C), 1.0 (40 °C), and 1.1 (50 °C) mg m−2, respectively. The larger specific adsorption capacities of N719 for TiO2 NS versus NP are because the (001) surface is more reactive for dissociative adsorption of reactant molecules compared with (101) facets. Notably, the qmax and qmax/SBET for both TiO2 samples increase with increasing temperature, suggesting that adsorption of N719 on the TiO2 surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The present work will provide a new understanding on the adsorption process and mechanism of N719 molecules onto TiO2 NS and NP, and this should be of great importance for enhancing the performance of dye‐sensitized solar cells.  相似文献   
82.
Photocatalysis has attracted much attention as an emerging algae removal technology, but the inactivation performance is inevitably affected by the extracellular polymeric substance (EPS) produced by algae. In this study, a photocatalyst (Ag2O/g-C3N4) with efficient algae inactivation is adopted to investigate the interactions with EPS, and the impact of EPS on photocatalytic algae removal is studied. The results show that EPS can adhere to the surface of Ag2O/g-C3N4 by electrostatic force. The interaction with EPS decreases the surface zeta potential of the Ag2O/g-C3N4 from 7.71 to −22.3 mV with the increase in EPS concentration, and the maximum ratio of particle size increases from 825 to 1281 nm. In addition, the interaction with EPS inhibits the release of Ag+ in Ag2O/g-C3N4 by half, thus, the toxicity of metal ions will be alleviated. Meanwhile, EPS can also be degraded by Ag2O/g-C3N4, indicating that EPS can work as a radical scavenger to protect the algae cells. Without the protection of EPS, 97.8% of algae cells are inactivated after 5 h photocatalysis. Therefore, more attention should be given to the interaction between EPS and photocatalyst to promote the design and application of the photocatalytic.  相似文献   
83.
Iron oxychloride (FeOCl) is known for reactive oxygen species (ROS) generation through Fenton chemistry. The activity of FeOCl is preserved in the slightly acidic pH value of the tumor microenvironment (pH 6.5−6.9). Such property can be advantageous in biobased systems, where ROS generation can be modulated in slightly acidic conditions, which is characteristic of the solid tumor microenvironment. In the present study, BSA-stabilized FeOCl nanosheets (NSs) are synthesized and characterized by transmission electron microscope, Fourier transform infrared spectroscopy, zeta potential analysis, dynamic light scattering, and UV–vis spectroscopy. The morphology of the nanoparticles is flake-like, and their hydrodynamic diameter is around 200 nm. MTT, apoptosis assay, and trypan blue staining evaluate the toxicity of FeOCl NSs toward the 4T1 cell line. It is found that the toxicity of the NSs is higher in physiological conditions of solid tumors (pH 6.5, H2O2 100 × 10−6 m ) than in the conditions of healthy organs (pH 7.4). Specifically, cancer cells are in their late apoptotic stage by more than eight times higher at pH 6.5 than pH 7.4. The toxicity results are in agreement with the in vitro catalytic assay of the NSs. Therefore, the FeOCl NSs can be the building blocks for constructing chemodynamic therapy agents.  相似文献   
84.
纳米颗粒分散是无机纳米材料在有机体系中应用的关键.本文提出了采用纳米颗粒液相分散体制备高度分散纳米透明有机无机复合材料的新方法,发明了超重力反应-萃取相转移方法制备纳米颗粒液相透明分散体技术,介绍了其制备原理和实施效果,以及其在纳米复合节能膜、纳米润滑油脂和高固含量光学材料等有机无机纳米复合材料中的最新研究进展.  相似文献   
85.
通过相界面反应制备了一维卟啉微纳米棒,并通过紫外、红外和X衍射仪等多种表征方法对其进行了表征.结果表明,在无机酸的作用下,卟啉分子通过-,氢键和静电作用等多种相互作用聚集成有序的J-聚集体.将此一维卟啉微纳米棒构筑为微纳米器件,并测试其光电性能.该纳米器件在可见光照射下的光电流很大,关闭光源,电流在40 s内降到最低,再次打开光源,电流又在120 s内升到了最大.经过多次"开"、"关"光源,电导的光响应依旧没有降低.这种具有光电响应的卟啉微纳米棒有望成为微纳电子器件的光电元件.  相似文献   
86.
This article is a brief overview of the emerging microfluidic systems called surface‐tension‐confined microfluidic (STCM) devices. STCM devices utilize surface energy that can control the movement of fluid droplets. Unlike conventional poly(dimethylsiloxane)‐based microfluidics which confine the movement of fluids by three‐dimensional (3D) microchannels, STCM systems provide two‐dimensional (2D) platforms for microfluidics. A variety of STCM devices have been prepared by various micro‐/nanofabrication strategies. Advantages of STCM devices over conventional microfluidics are significant reduction of energy consumption during device operation, facile introduction of fluids onto 2D microchannels without the use of a micropump, increased flow rate in a special type of STCM device, among others. Thus, STCM devices can be excellent alternatives for certain areas in microfluidics. In this Minireview, fabrication methods, operating modes, and applications of STCM devices are introduced.  相似文献   
87.
88.
The high‐spin electronic states for lithium, sodium, and potassium four‐atom clusters were studied. In particular, we performed coupled cluster geometry optimization of the quintet state in tetrahedral geometry. The quintet state of these systems is characterized by having all the valence electron unpaired, giving rise to the so‐called no‐pair bonding. Single‐point full configuration interaction computations on the equilibrium geometries for the various clusters are also presented. The analysis of the valence orbitals in a localized representation confirms the importance of the p atomic orbitals to explain this unusual type of bond. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   
89.
90.
Solution-phase synthesis of nanometer-sized silver particles is reported by sodium borohydride reduction of AgNO3. Two isomeric dicarboxylates (sodium maleate and sodium fumarate) have been used as stabilizing agents. The dicarboxylate-stabilized silver nanoparticles are characterized by UV-vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM) and fourier transform infrared (FT-IR) spectroscopy. A qualitative comparison is made between the UV-vis spectral characteristic of the SPR band and the simulated curve obtained from modified Mie's theory. Silver nanoparticles prepared using these two isomeric dicarboxylates show intense fluorescence in the visible region. DFT with hybrid functional (B3LYP)-based frequency (IR) calculation of both the dicarboxylates and the respective nanoparticles are in good agreement with the experimental IR frequency. On the basis of this calculation a model has been proposed for the stabilization of silver nanoparticles by these two isomeric dicarboxylate anions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号